hammer-io

DEesigN DOCUMENT

Team: sdmay18-19
Client/Adviser: Lotfi Ben-Othmane
Members:
Erica Clark - Data Analytics Lead & Website/Content Management
Nathan De Graaf - Asana Expert & Weekly Status Reports
Nathan Karasch - Project Manager & Technical Writing
Jack Meyer - Communications & Software Architecture
Nischay Venkatram - Ul Lead & Node.js SME
Email: sdmayi8-19@iastate.edu

Website: sdmayi8-19.sd.ece.iastate.edu

Revised: 5 Dec 2017 (version 2)

mailto:sdmay18-19@iastate.edu
http://sdmay18-19.sd.ece.iastate.edu/

Contents

i. List of Tables and Figures
ii. Acronyms and Definitions
1 Introduction
1.1 Problem Statement
1.2 Solution Approach
1.2.1 Purpose
1.2.2 Goals
1.3 Operational Environment
1.4 Intended Users and Uses
1.5 Assumptions and Limitations
1.5.1 Assumptions
1.5.2 Limitations
1.6 Expected End Product and Deliverables
1.6.1 Automated DevOps Process
1.6.2 Deployment Monitoring
1.6.3 Node]JS Microservice Development Framework
1.7 Deliverables Timeline
2 Specifications and Analysis
2.1 Functional Requirements
2.1.1 Automated DevOps process for Node.Js applications
2.1.2 Framework to develop Node.Js microservice applications
2.1.3 Monitoring Interface
2.2 Non-functional Requirements
2.3 Standards

2.4 Proposed Design

10

Pace 1

2.5 Design Analysis

3 Testing and Implementation
3.1 Interface Specifications
3.2 Hardware and software
3.3 Process
3.4 Testing Flow
3.5 Results

4 Closing Material
4.1 Conclusion

4.2 References

13
15
16
16
16
17
17
18
18

18

Pace 2

i. List of Tables and Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Figure 6

First Semester Timeline

Second Semester Timeline

Tyr CLI Flowchart

Block Diagram

Yggdrasil Software Architecture

Test Flow Diagram

ii. Acronyms and Definitions

Cl
CDh
CLI

DevOps

Docker
GUI
MS
Node.Js
npm
PR

Ul

Continuous Integration
Continuous Deployment
Command Line Interface

DevOps is a software engineering practice that aims at unifying software
development (Dev) and software operation (Ops).!

A container platform used for deploying distributed software applications.
Graphical User Interface

Microservice

A framework for running standalone JavaScript applications.

Node Package Manager

Pull Request

User Interface

! https://en.wikipedia.org/wiki/DevOps

11

12

13

17

Pace 3

https://en.wikipedia.org/wiki/DevOps

1 Introduction

1.1 PROBLEM STATEMENT

There is a tendency to develop software as a collection of managed microservices. The microservice
architecture involves a fair amount of complexity that may intimidate small teams with limited
resources, limited time, or limited domain knowledge. Often the microservices need to be deployed
to the cloud. As a result, another constraint on a small team is maintaining the system as its various
components are updated independently of each other. Traditionally this is managed by a separate
“DevOps” team; however, again, a small team with limited resources may not be able to dedicate
people to the task. These two primary concerns—the overhead involved in setting up a
microservices architecture and the resources involved in maintaining one—outline the main
problem this project is addressing: that a microservices architecture may not be feasible for small
teams, such as students or startups.

1.2 SOLUTION APPROACH

We will create a framework for developing Javascript-based microservices that exhibit specific
quality attributes, as well as provide an automated DevOps process for managing the development
and deployment of these JavaScript microservices. The project will be built in Node.js, an
open-source server framework for running JavaScript code.

1.2.1 Purpose

By creating a framework for Node.js microservices, teams with limited knowledge, resources, and
time can quickly get started with a simple infrastructure. We also provide the tools and structure to
monitor and maintain the health of their applications in development and in production. This lets
more developers start making cool things faster.

1.2.2 Goals

The main goal of our project is to create an environment to develop JavaScript microservices as well
as a DevOps process to manage and monitor its deployment.

Specifically, we hope to create an app that requires minimal configuration and setup. This means
the user would download one or two different tools and then have scripts create most of the
configuration files needed with account info (e.g. GitHub, Docker Hub, etc.) supplied by the
developers. Easy-to-use CLI/GUI tools would be available to push, deploy, and create new
microservices.

Another goal that fits into this process is creating a seamless deployment workflow. This looks like
a user pushing code to a master branch and watching his or her changes reflected in the live
product a short while later. Once the application is deployed, the user then tracks the status of the
application through a Data Monitoring app, which can notify interested parties when a service goes
offline, display metrics related to server performance, etc. In addition, the Data Monitoring tool
should be able to perform load balancing between microservices.

Pace 4

1.3 OPERATIONAL ENVIRONMENT

Our project is a software project that will operate in 3 different environments:

1. A Command Line Interface (CLI), which will be installed on a user’s computer
2. A user’s linux server
3. A cloud-based hosting service

The CLI gives the user the ability to generate a Node.js microservices project. Since the CLI will be
used to generate a new user project, it is necessary that it be installed on the user’s computer.
Having software which can be installed on a user’s computer gives a semi-unpredictable operating
environment. To make it more predictable and limit the scope of the project, our software supports
running on the three most common operating systems (Windows 10, Mac OSX, and Debian-based
distributions of Linux).

The second operating environment would be on a user’s linux server. Our monitoring service will
have the ability to be run on any hosting service a user should want to use, including their own
servers. We must ensure that our monitoring service has the ability to be deployed on a user’s
server.

Finally, we provide a cloud-hosted solution for the online project generator and for the user project
monitoring service. That means, in addition to the user’s monitoring service being independently
deployed to his own linux server, we will have a central monitoring service run on our own host.

Our software uses the Node.js programming language. Since we choose Node.js, this means our
software will run in a JavaScript runtime environment built on Chrome’s V8 JavaScript engine.
Node.js requires the user of our software to have Node.js v5 or newer and npm installed on their
computer/linux server.

Our project strives to be fully open-source, which makes distribution of the software slightly
different than traditional software. We primarily use Node Package Manager (npm) to distribute
our software, but all of the code is available from GitHub and can be built from source. The
framework is also available via npm and can be installed from source. Finally, the monitoring
service can also be distributed and installed from source.

1.4 INTENDED UsERS AND USES

For many companies, there is a lot of overhead in creating a new product. Our tool seeks to
alleviate some of this overhead by providing a development pipeline out of the box. Our
application and framework will allow developers to begin programming immediately without
waiting to set up their deployment pipeline and have to worry about the intricacies of all the
configurations. While many developers may benefit from Hammer, it is intended for students and
small companies who need to deliver a working product with limited resources and time.

The framework will be highly customizable, with popular options like Express.js, GitHub, and
TravisCI to fit a diverse set of needs. These options may be chosen initially or may be integrated
after the project has already begun development.

Pace 5

1.5 ASSUMPTIONS AND LIMITATIONS

1.5.1 Assumptions

We assumed the major audience that would be interested in using this product will be
students, small teams, and startups that are looking for solutions that are open source, easy
to use, and scalable. Most of the decisions that drive the project, are based primarily on
this assumption. We want users to be able to scaffold projects quickly and scale without
hitting any resource constraints. So all the technologies that we use in this project are open
source and backed by a large community of developers.

We assume the user is looking to build a microservice application in NodeJS, along with a
continuous integration pipeline using TravisCI, containerization using Docker, backend
using popular Node]S web frameworks like Express]S, and deployment using hosting
services like AWS, Heroku, and Digital Ocean. Hence, currently we only support
generation of projects that use some or all of these technologies.

If the user chooses to use any of these technologies, we assume they already have the
necessary software installed to be able to generate and develop an application in these
technologies. This includes having software like Git, Node]JS, etc installed and necessary
accounts on Github, TravisCI, AWS, etc created beforehand.

1.5.2 Limitations

The major limitation our project is that there is a limit to the processes we can automate.
This can be seen directly from the assumptions. We cannot automate processes such as
creating Github, TravisCI, or AWS accounts and also cannot simply install a variety of
software on their machine. We merely assume they already have done that or fail
gracefully.

Since project revolves around bringing together open source software and many 3rd party
services and APT’s, it is extremely difficult to test all the different pieces combined. This
would make the application more prone to bugs.

Since we are focusing on a certain set of technologies to provide to the user, we are
possibly eliminating larger companies from the user group because they may want services
or software options that we do not provide.

1.6 ExpecTED END PrODUCT AND DELIVERABLES

By the end of development for the project, we will have created three products:

1.

2.
3.

An automated DevOps process for Node]S microservice applications
Application to monitor the health and status of the deployed Node]S applications
A framework to develop NodeJS microservice applications

The first product we are developing is the automated DevOps process for Node]S microservice
applications. In this product, the user should have the ability to do the following:

Manage their development workflow (Create Github repo, push code, etc)

Have their code automatically pushed to a CI environment to have it tested and built
Have their code automatically containerized and deployed to hosting services
Manually deploy and revert deployments of their application

Perform security analysis

Pace 6

1.6.1 Automated DevOps Process

The DevOps application can be used in two different ways. The first is as a command line interface.
Here, the user will be able to have the initial code base for their project automatically generated
(a.k.a. scaffolded). This should include the configuration files needed for the many services our
application will be connecting to based on the user’s choices. We will also hook up any 3rd party
applications as needed.

The other way the DevOps capabilities are consumed is through a web application that allows users
to view statistics about the DevOps process, view development artifacts (build statuses, code
coverage, test results, test run history, etc.), manage the build and deployment of the various
services, and perform the same functions as the CLI. The DevOps application can be deployed on
the user’s own server or be consumed through our cloud service.

1.6.2 Deployment Monitoring

The second part is the monitoring application. This overlaps with the Devops web application. We
plan to have it as part of the same web application. The user should be able to view the health of all
the deployed applications, have access to crash logs/reports, memory usage, CPU usage,
application load, and uptime of each application.

1.6.3 Node]S Microservice Development Framework

The third part is the framework that will allow users to write these microservice applications in
Node]S. The framework should have capabilities like service discovery, inter-service messaging,
request load balancing, and service presence and health. This wil be researched further in the
second semester. We are looking to leverage existing frameworks and modify it for our use case.

1.7 DELIVERABLES TIMELINE

The following is a Gantt chart outlining the proposed timeline for the project’s development
through the first semester. The blue bars indicate project phases.

Aug Sept Oct Mov Dec
w1 (w2 w3 [w4 | wi[w2 [w3|wa|[w1|w2|{wa|ws|wr|w2]|ws|ws|wi|w2|w3]|ws
Requirements gathering
| Research |

‘ Build CLI tool for app generation |
| Web app setup |

Demos

Figure 1. First Semester Timeline

The first few weeks of the project, we will spend time understanding the requirements, researching,
and prototyping. Most of our design thinking will happen here and we'll make sure to meet with
the client often in order to get the requirements. After we finish the first few weeks, we will start
work on the command line tool to build an application and deploy it from scratch. We plan to
spend a decent part of the semester building the CLI. Early November, we plan to transition to

Pace 7

architecting and building the web app where users can set up, deploy, and monitor the deployed
applications. Most of the work for the web app will continue into the next semester.

The following is a Gantt chart outlining the proposed timeline for the project’s development
through the second semester. The blue bars indicate project phases.

Jan Feh Mar Apr
wi (w2 w3 [wa |[wr [w2|wa|[wa|wr[w2]|ws|[ws|ws|wz2]|ws|ws
Maonitoring Web application
| Deployment Web application |

| Development framework
Testing, Validation, Polishing

Figure 2. Second Semester Timeline

The plan for the first 2 months is to continue working on the web application to monitor and
deploy microservice applications. There will be some overlap while working on the monitoring
solution and deployment solution. We will continuously test and validate the solution. In early to
mid March the plan is to slowly transition to developing the development framework that will

allow users to code scalable microservice applications. We plan to wrap everything up by the end of
April.

2 Specifications and Analysis

2.1 FUNCTIONAL REQUIREMENTS

2.1.1 Automated DevOps process for Node.Js applications

e Provides a CLI, which contains commands to:
o Setup a new project (generates default configuration files) based on the services
that a user wants to include
o Serve the web application version of the CLI, which must:
m Allow the user to select which services he/she wants to include in a new
project
m Download the default files for a new project based on the services that a
user wants to include
m View reports, results, and statistics about the DevOps process
m Manage the build and deployment of services
o Automate delivery of code to the CI environment, which must:
Build the application
Package the application in a Dockerfile
Run test suites
m Report status and results
e Ability to configure various services with a configuration file
e Provides documentation for configuration

Pace 8

2.1.2 Framework to develop Node.Js microservice applications

e Provides a CLI, which contains commands to:
o Generate Node.Js templates for new microservices
o Integrate new microservices into the existing microservice architecture
o Configure the microservices (host, port, etc)

2.1.3 Monitoring Interface

e A web application, which must:
o Allow reports and logs to be downloaded
o Allows to view build statuses and test run history for different branches
o Allows to view useful statistics like uptime, health, load, etc of the the deployed
microservices
o Allows to view time for completion of bug fixes or features.

2.2 NON-FUNCTIONAL REQUIREMENTS

e Usability
o The system will only support the English language
o The CLI must have a clean, consistent look and feel
o The web application must have a clean, consistent look and feel
o The application will be usable by those who have a limited understanding of

DevOps
e Supportability
o The system will support Unix-based systems (e.g. Mac or Linux)
o The system will support Node.Js version 8.x
e Reliability
o The deployed web applications will run 24 hours a day, 7 days a week
o We expect to have an uptime of greater than 99%
e Security

o The system will not store any plain-text passwords in configuration files or
elsewhere

2.3 STANDARDS

The team will use the following standards during development of the project:

e Version Control System

o Git will be used as the primary means of version control for all project code.

o The Google software suite (Docs, Sheets, etc) will be used for all formatted
documentation, such as planning and design documents. It has version control
features that can accessed from the menu (File — Version history).

e Code Review

o Development will be done in feature branches.

o When a feature branch is ready to be merged to the master branch, the author will
assign one or more of the other project members as a reviewer.

o Reviewers must check to ensure the code:

m correctly implements the desired functionality

Pace 9

contains sufficient tests to ensure correctness
passes tests
is free of errors

m integrates successfully with the existing software
o Reviewers will communicate code issues to the author, who is then responsible for
addressing all issues.
o Once the code has passed inspection, it can be merged to master.
e Testing Standards
o Mocha for Unit Testing, Acceptance Testing, and Integration Testing
m It is expected that all code is tested to the best of the developer’s abilities
o Manual Testing for System Acceptance Testing
m Weekly project demos will happen at meetings with client to determine if
the new features are what was expected
o Manual Testing to fill any gaps in automation testing

2.4 PrROPOSED DESIGN

The team has finished the minimal viable product of the automated DevOps CLI (the first major
Functional Requirement). The following has been accomplished thus far:

e When the user starts the CLI, it asks a series of questions for scaffolding a new project. It
asks for the following:
o Project Name, Description, Version, Author, and License
o Tooling Options
m Choice of Continuous Integration Tool
e Currently we support TravisCI
m Choice of Containerization Tool
e Currently we support Docker
m Choice of Hosting Service
e Currently we support Heroku
m Choice of Web Application Framework
e Currently we support Express]S
GitHub username/password
For each tooling option selected above, the CLI asks follow up questions based on
the user’s choice (e.g. if Heroku is chosen for hosting, it will prompt for the user’s
Heroku email, username, and password)
e Once the prompts are complete, the CLI generates the initial file structure:
o It creates a new directory for the user’s project
o It generates the “package.json” and “src/index.js” files for the Node]JS project
o It generates a “.gitignore” file
o If Express]S is chosen as the web application framework, the CLI will add Express
to the module dependencies and generate the initial “src/routes.js” file
If TravisCI was chosen, the CLI will generate a “.travis.yml” file for the project
If Docker was chosen, the CLI will generate a “Dockerfile” and “.dockerignore”

o

Pace 10

e Once the files have been initialized, the CLI integrates the project with the selected

third-party applications

o It initializes a new git repo in the project folder, commits the files, and pushes

them to a new repository in the user’s account

O O O O

It creates a new Heroku project
It builds the project on TravisCI

[t enables the project in the user’s TravisCI account

It deploys application to Heroku on success build

The team has successfully deployed the CLI to NPM and can be downloaded using the npm install
command via the command line. Currently, the support for the CLI is ongoing and the team is
adding features when requested and fixing bugs when found. Below you can find a flowchart for the
flow of the program from a user’s point of view.

$ npm install tyr-cli --global

$ tyr [--config <file>]
[--logfile <file>]

User

Y

Exit :
Unsuccessful

Exit : <

cli.js
run(program)

Tyr CLI
Flowchart

Enable logging to
file

Yy

Prompt user for
configuration
details

Sign into 3rd
Party Tools

Valid responses?

Generate project files
Create GitHub repository*
Enable Heroku deployment™
Enable TravisCI*

Push code to GitHub*
Run “npm install’

Success!

* (if applicable)

Pace 1

Figure 3: Tyr CLI Flowchart

The following is the proposed system block diagram for the deployed web application portion of

the project. The user has the option of generating a project from the CLI or downloading a zip

archive of the files generated by the web platform. Once the project is created, it gets pushed to
Source Control (GitHub) by the CLI, enabled in the Continuous Integration suite (TravisCI), and
deployed to the Cloud Hosting platform (Heroku). The TravisCI automation, which runs static and
dynamic tests, is triggered by web hooks in the GitHub repository. Tests are run on code pushes,
merges, and pull requests, and upon merging to master it is setup to deploy a docker container of

the app to Heroku.

The DevOps Monitoring Platform provides the graphical user interface to monitor various aspects
of the project: hosting uptime, test results, code coverage, repository statistics, etc.

Docker

Container

Monitor hosting, test results,
code coverage, repository

statistics, and other metrics Continuous

Integration

(TravisCl)
DevOps/
Microservices

DevOps
Monitoring
Platform

I Hooks into / triggers
Framework
(Tyr CLI) Source Control

(GitHub)

Generates
Project

Monitor
Project
Internet

User’s Local
Machine

Push to / Pull from

Cloud Hosting
(Heroku)

Code Coverage
|
Integration

Run Tests U —

Enables

DevOps/
Microservices

Generates Project
' Files

User Microservices

Project

Figure 4: System Block Diagram

Framework
(Tyr CLI)

The team is currently working on the next phase of the project, which includes developing a web

application to do the following:

The ability to create users, login, and logout

Duplicate the functionality of the CLI

The ability to to create, edit, and remove

The ability to view all projects

The ability to add and remove contributors on a project

tracking information, and more.

View statistics about the project such as build statuses, test results, code coverage, issue

PAcE 12

/ Linux Server \
(" Docker Container)

HTTP Request (port 80)
> React
Single-page MySQL
l HTTP Response Web Application Database
| \ =
TCP/IP
4 | N
HTTP Request Docker Container
(port 3000)
> Node.js Sequelize
Web Server ORM

HTTP Response & y

Figure 5: Software Architecture of Yggdrasil (discussed below)

2.5 DESIGN ANALYSIS

Our team has created the minimum viable framework for the automation of the creation and
deployment of a simple Node.js project. The work done so far mainly consists of linking various
services together through a simple CLI for the user. Targeted research and careful deliberation was
used to pick the different tools our framework would use.

The simple CLI we have created has functionality for creating a sample project along with all the
necessary configuration files for the selected services. So far, we provide TravisCI as an option for
continuous integration and Docker as an option for a containerization platform. GitHub will act as
the software development platform for the user’s project. After the user provides their account
details, our CLI sets up both the user’s local git structure along with a connected remote repository
on their account. This GitHub project and repository is then linked with TravisCI and in turn with
Docker. This overall allows the user to go from local development to their remote project all the
way to a container within Docker. The CLI has been able to successfully perform each step of this
functionality.

Our team makes the conscious choice towards opinionated development. This means, for example,
that rather than work to support all forms of continuous integration services, we choose to support
TravisClI in the best way possible and leave the option for other tools to be added in the future. This
practice of choosing the simplest or most popular tool used in the industry best fits the needs of
our client who wants the minimum hassle possible in setting up and using the services of their

Pace 13

project. This means that at each part in this process we have the option to continue to add options
and services for our users.

Our team is also working on the web application. Most of the tools that our framework will support
were chosen when we developed the CLI. Part of the web application’s functionality is to duplicate
what the CLI can do. The web application is going to be developed using JavaScript, with the React
framework used on the client side and Node.js used on the server side, our database is a MySQL
database. We choose JavaScript because the team is all familiar with the language and our tool will
support the creation of a JavaScript project. MySQL is used because of its ease of use and will store
the data in a easy to use format. Our project will be wrapped with a Docker Container which will
make it easy to deploy in many types of environments. The project will use TravisCI for its
Continuous Integration and Continuous Deployment. The TravisCI plus Docker setup will allow us,
as developers, to focus only on development after the tools are set up. This will allow for quicker
development and eliminate production bugs. We anticipate the both the front end server and back
end server will be deployed on a Linux server.

As we move forward, we will continue to build out the services and functionality for DevOps and
deployment of the JavaScript services. We will continue to build out the monitoring and DevOps
functionality through a more extensive front end website to supplement the simple CLI we have
built so far.

Pace 14

3 Testing and Implementation

We will perform several types of testing to ensure the project meets the functional and
nonfunctional requirements. As needed, we will reiterate on the development and design of new
features if they fail any of the various tests detailed below.

o Regression Tests:

m Unit Tests:

m Unit tests shall be written for all code committed to the repository.
m The author of the code is responsible for its unit tests, and the code
reviewers are responsible for holding the author accountable.

m Integration Tests:

m Once a significant number of components have been integrated, tasks will
be created and assigned to developers to write integration tests.
m The integration tests should ensure the subset of components behave
together as intended.
o System and Acceptance Testing:

m Manual testing by developers will be the standard for System Testing. This will
take place upon merging new code and upon completion of major portions of
functionality.

m Product demos to the client will be the standard for Acceptance Testing. These
take place on a weekly basis at the team meeting.

o Code Coverage:

m We will install a code coverage tool into the continuous integration suite to report
what level of test coverage we have achieved. Given the short time frame of the
project and the rapid pace at which a new project is developed, we likely won’t
shoot for a hard code coverage metric until the second semester. At that point we
will evaluate whether code coverage makes sense in the context of our project and

what percentage we should be targeting.

One of the testing challenges we face is that we rely on tight integration with third-party
distributed applications for our software to function. For example, the CLI creates a new GitHub
repository through GitHub’s REST API and enables TravisCI on that repository using TravisCI’s
REST API. It doesn’t stop there. We will need to integrate with hosting services (e.g. Heroku),
containerization services (e.g. DockerHub) and other services that are part of the DevOps pipeline.
These integrations are vital to meeting our functional requirements, but they are very difficult to
automate. We created tests that run on TravisCI when built, however, occasionally these tests will
fail if we make too many requests to GitHub so TravisCI does not fail the entire build if these
integration tests do not pass. However, they ensure that the developer does not make breaking
changes to one part of the system while altering the deployment pipeline.

Pace 15

3.1 INTERFACE SPECIFICATIONS

As we develop our project, we add tests to verify consistent functionality after each change. A
majority of our tests code interfaces with various API including GitHub, Heroku, and TravisCI. To
ensure continued functionality, we have a suite of integration tests that test that the calls to the API
perform correctly and bring about the expected result.

3.2 HARDWARE AND SOFTWARE

Mocha: A test suite for Node.js that results in organized, and easy-to-read tests. The tests are run
each time there is a pull request to master to ensure that the master branch always has functional
code.

Linter: Enables consistent style between multiple developers and keeps track if there are any
remaining unused imports, etc to keep the code base clean.

CodeCov: Analyzes and reports our test coverage. It alerts us if any changes were made that
reduce the percentage of our code that is tested to improve the quality of our tests and ensure that
all parts of the code is being tested.

TravicCI: The continuous integration tool that we set up a new project to use. After making
requests to the API during testing, we make more requests to ensure that the changes were made.
Additionally, for our own code, Travis CI will run the builds to ensure that the code on GitHub
remains in a functional state by running our suite of tests.

GitHub: The user’s project files will be pushed to GitHub. We will need to verify that the project
files exist on GitHub.

Heroku: This is the server where the user’s project will be deployed. Our testing must verify that a
project has been created on Heroku and the correct settings are enabled.

3.3 PrOCESS

The testing starts locally on the developer’s machine. First, it is only unit tests to ensure that the
new code functions as expected. Before it is pushed, Regression Testing is done using Unit and
Integration testing to ensure that the functionality of other parts of the code base have not changed
unexpectedly. If these tests pass, the code is pushed to GitHub, where the tests are ran again to
ensure that still no changes were unexpectedly made while merging and to ensure that the code on
GitHub is functional. If the build fails on Travis, the code will not be merged into the master
branch on GitHub until it works as expected. Once the corrected code has been committed and
the tests pass in TravisCI, the PR can be merged after it has been reviewed by another developer.

Once a project has passed the Travis build, it can be deployed in the case of the webapp, or
published to npm in the case of the command line interface. It then must undergo System
Acceptance Testing. The developers then present the new feature or developments to the client
who can decide whether or not it fulfills the required functionality. Ifit does, the developers may
move on to a new solution. Otherwise, the developers will need to tweak or redesign and
implement the current solution according to the client’s feedback.

Pace 16

Send to GitHub and Travis Build
TravisCl Deploy
API Integration API Integration
Tests Tests

Yes Yes

Regression Tests Pass? Regression Tests »{_ Pass? System
\ Acceptance
Testing
No No ¢
L No

Alert Developers [Pass?

YYes

Done

Figure 6. Test Flow Diagram (discussed below)

3.4 TEsTING FLow

1. Regression testing and API Integration Tests
a. Ifthe unit tests pass and integration tests pass, we push the project to GitHub and
TravisCI begins to build it.
b. Otherwise, we rerun the tests
2. Travis Build - API Integration Testing and Regression tests
a. Ifthey pass successfully, the project is deployed (for the webapp).
b. Ifit fails, an email is sent out to the developers, and they have to start the process
over to fix the failure.
3. System Acceptance Testing
a. Ifit does pass, the process is over for that feature.
b. Ifit does not pass the client’s approval, any deployments may need to be rolled
back and the developers must redevelop the solution.

3.5 RESULTS

We have established a rudimentary test cycle centered around unit testing, style analysis testing,
integration testing, code reviews, manual testing and system and acceptance testing. The team is
adhering well to this initial process, and we are currently researching additional test methods for
the various third-party integrations.

The build and test logs from TravisCI can be viewed at https://travis-ci.org/hammer-io/tyr .

[This part will be refined in the 492 semester where the majority of the implementation and testing
work will take place]

Pace 17

https://travis-ci.org/hammer-io/tyr

4 Closing Material

4.1 CONCLUSION

The popularity, simplicity, and usefulness of JavaScript microservices means there is a need from
users for an easy to use and an all encompassing framework and devops systems to build and
deploy these JavaScript services. The goal of this project is to meet these needs. Hammer seeks to
provide three main parts: an automated deployment process, a Node.js framework to accommodate
and enable microservices, and a data monitoring platform to monitor the health and metrics of the
entire system.

In order to achieve this functionality, our team plans to implement the following three parts of the
overall product. First we build a DevOps application to manage the code base of the service. This
can be managed through either a CLI or a web application. Building these applications will be the
first step of the project. Once finished with this portion, the user should be able to deploy their
own service to be consumed by their users through our application. Second, we will create a
monitoring application that will build upon the DevOps web application. This shows the users all
relevant information about their information including logs, load, uptime, etc. This monitoring
application is part of the features that makes our application better for our clients than managing
each of these services individually. Finally, we create a framework to allow users to write these
microservices in NodeJS. The framework details will be further developed during the second
semester.

Hammer, our solution to all JavaScript microservice development needs, seeks to meet the specific
needs of our users in a way that other similar services cannot match. Our application’s opinionated
approach of setting up a suggested approach without the user needing any specialized knowledge
makes Hammer the perfect choice for students or small teams that cannot afford to waste time or
resources setting up and managing the logistics of their application. By focusing on simplicity, ease
of use, and specializing in JavaScript microservices, our application can provide a better service
than any other general DevOps or development framework service.

4.2 REFERENCES

Babel Documentation: https://babeljs.io/docs/usage/babelrc/
Docker Documentation: https://docs.docker.com/develop/sdk/

DockerHub API: https://docs.docker.com/vi.4/reference/api/docker-io api/
ESLint Documentation: https://eslint.org/docs/user-guide/

Express]S Documentation: https://expressjs.com/en/4x/api.html

GitHub API: https://developer.github.com/v3/

Heroku API: https://devcenter.heroku.com/categories/platform-api

Mocha Documentation: https://mochajs.org/

NodeJS Documentation: https://nodejs.org/en/docs/

NPM Documentation: https://docs.npmjs.com/

TravisCI API: https://docs.travis-ci.com/api

TravisCI Documentation: https://docs.travis-ci.com/

Pace 18

https://babeljs.io/docs/usage/babelrc/
https://docs.docker.com/develop/sdk/
https://docs.docker.com/v1.4/reference/api/docker-io_api/
https://eslint.org/docs/user-guide/
https://expressjs.com/en/4x/api.html
https://developer.github.com/v3/
https://devcenter.heroku.com/categories/platform-api
https://mochajs.org/
https://nodejs.org/en/docs/
https://docs.npmjs.com/
https://docs.travis-ci.com/api
https://docs.travis-ci.com/

